
MODE SHAPE OF DUCT ACOUSTICS



WHY STUDY THE ACOUSTICS OF DUCTS

Ducts, also known as waveguides, are able to efficiently 

transmit sound over large distances. Some common examples:

• Ventilation ducts

• Exhaust ducts

• Automotive silencers

• Shallow water channels and surface ducts in deep water

• Turbofan engine ducts



WAVE EQUATION

The acoustic pressure p(x,y,z,t) in a source-free region of space in 

which there is a uniform mean flow Ux in the x – direction 

satisfies the convected wave equation:
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where c is the speed of sound.

For simplicity, and without loss of generality, we shall only 

consider solutions to the wave equation in the absence of 

flow, Ux = 0.



SEPARABLE SOLUTIONS TO THE WAVE EQUATION IN 

CARTESIAN AND CYLINDRICAL COORDINATES

Cylindrical duct Rectangular duct 
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Assume harmonic (single-frequency) separable solutions of the form
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SEPARABLE SOLUTIONS TO THE WAVE EQUATION IN 

CARTESIAN AND CYLINDRICAL COORDINATES

(Continued)

Substituting into the wave equation and separating variables:
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Bessel’s equation of order m



GENERAL SOLUTIONS

General solutions to these second order equations are:
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HARD-WALLED DUCT EIGENVALUE EQUATION

The component of particle velocity un normal to the hard-walled 

duct vanishes:
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The solutions Ym(krr), sin(kzz) and sin(kyz) cannot satisfy these 

boundary conditions. Furthermore, only particular discrete values of 

transverse wavenumbers  (eigenvalues) satisfy the boundary 

conditions given by.

( ) =J k am mn 0 ( )sin k Lny y = 0 ( )sin k Lnz z = 0



MODAL EIGENVALUES

k j armn mn=  / k n Lny y y=  / k n Lnz z z=  /

Bessel functions of order m = 0, 1 and 2

J x0 ( )

J x1 ( )

J x2( )

x

m/n 1 2 3 4 5 6 7

0 0 3.8317 7.0156 10.1735 13.3237 16.4706 19.6159

1 1.8412 5.3314 8.5363 11.7060 14.8636 18.0155 21.1644

2 3.0542 6.7061 9.9695 13.1704 16.3475 19.5129 22.6716

3 4.2012 8.0152 11.345 14.5858 17.7887 20.9725 24.1449

4 5.3176 9.2824 12.681 15.9641 19.1960 22.4010 25.5898

5 6.4156 10.5199 13.987 17.3128 20.5755 23.8036 27.0103

6 7.5013 11.734 15.268 18.6374 21.9317 25.1839 28.4098

Stationary values of the Bessel function



CUT OFF FREQUENCY

Earlier we saw that the transverse and axial wavenumbers of a 

single mode are connected by the dispersion relationships
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These expressions make explicit the existence of threshold 

frequencies                   at frequencies below which  is purely 

imaginary and the mode decays exponentially along the duct. The 

mode is said to cut off, or evanescent. 

mn mnck=
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CUT OFF FREQUENCY

This cut-off frequency follows from the above as
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In terms of cut-off frequency
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MODE COUNT FORMULAE

At a single frequency only a finite number of modes N(ka) and 

N(kLx) are cut on and able to propagate along the duct without 

attenuation. The rest decay exponentially along the duct. In the 

high frequency limit:
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MODE COUNT FORMULAE

A comparison of this mode-count formula for circular ducts with the

exact count (histogram) is presented below.
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MODES AND MODE SHAPE FUNCTIONS

In seeking a solution for the pressure field in a duct we obtained, not 

a single unique solution, but a family of solutions. The general 

solution is a linear superposition of these ‘eigenfunction’ solutions:
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The resultant acoustic pressure in the duct is the weighted sum of 

fixed pressure patterns across the duct cross section. Each of 

which propagate axially along the duct at their characteristic axial 

phase speeds. 
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MODE SHAPE FUNCTIONS 

Cylindrical Duct Mode Shape Functions
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MODE SHAPE FUNCTIONS 

Rectangular Duct Mode Shape Functions
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CUT-OFF RATIO



mnk

k
Earlier we saw that each mode the axial 

wavenumber is mnk and the wavenumber 

in the direction of propagation is k (=/c)

21/1 mnmn  −=

By simple geometry, mn equals the cosine of the angle 
between the local modal wavefront and the duct axis. It may 

therefore be interpreted as a measure of how much the mode is 

cut on.

A more common index of cut on is specified by the cut-off ratio 

 defined by



CATEGORIES OF MODAL BEHAVIOUR

mn < 1. Mode is cut-off and decays exponentially along 

the duct. Pressure and particle velocity are in  

quadrature and zero power is transmitted.

mn = 1. Mode is just cut on (or cut-off) and propagates 

with infinite phase speed (and zero group velocity). 

No modal power is transmitted.

mn > 1. Mode is cut on and propagates at an angle                 

to the duct axis. Transmitted modal sound power . 

Axial phase speed greater than c and group 

velocity less than c.

mn1cos−



CATEGORIES OF MODAL BEHAVIOUR



AXIAL PHASE SPEED

Each mode propagates axially along the duct as                       . 

The axial modal phase speed cmn is given by
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The axial phase is infinite at the 

cut-off frequency tending to c as 

the frequency approaches infinity. 



CIRCUMFERENTIAL PHASE SPEED

At a fixed position along the duct, points at the wall of constant 

phase are given by                . The circumferential phase speed at 

the wall is therefore 
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A property of Bessel functions Jm for large m is that               . 

Combining this result with the cut on condition                     

gives
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MODAL RADIATION FROM HARD WALLED CIRCULAR DUCTS

The acoustic pressure                  in the far field of a semi-infinite 

circular hard walled duct may be expressed as
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MODAL RADIATION FROM HARD WALLED CIRCULAR DUCTS

Some representative directivity plots (in decibels) for the (m,n)=(40,3) 

mode at three frequencies is presented below

ka = 60, =20 ka = 137, =1.1ka = 95, =2

( )=(40,3)m,n



MODAL RADIATION FROM HARD WALLED CIRCULAR DUCTS

SIMPLE RULES

• The angle P of the principal radiation lobe equals which is

identical to the axial propagation angle within the duct.

• Modal radiation becomes progressively weaker as the frequency approach

cut-off from above tending to zero exactly at cut-off.

• No major or minor lobes occur in the rear arc.

• Zeros (or nulls) in the radiation pattern occur at angles .

Angles of the minor lobes occur roughly mid-way between the angles of the

zeros. The number of zeros and minor lobes increase roughly as the

frequency squared.

• Symmetrical angles exist s beyond which modal radiation is extremely

weak. These are referred to as shadow zones (or cones of silence) and occur

at

 P mn= − −sin 1 1

=  −cos ,1 j j nmj

s m ka= −sin 1


